
Spatial Analyzer SDK
The Spatial Analyzer SDK provides a means by which to write custom applications that utilize
Measurement Plan functionality within Visual C++ and VB.NET. Once the SDK engine has been
added to the development environment, Measurement Plan Steps can be executed within the
programming language.

Adding the SDK to the Visual Studio Application

C++:

1. Create a new C++/MFC project within Visual Studio

2. For illustration purposes, let's assume a dialog application is created.

Note that "Dialog based" has been indicated in the above dialog.

Make sure that "Automation" has been checked.

3. Now add the SDK to the application. From the Solution Explorer, right mouse click on the
ExampleApp within the tree and select Add >> Class.

4. Select MFC Class From TypeLib, then press the Add button.

5. Select the "SpatialAnalyzerSDK" from the "Available type libraries" drop-down. Then press the
">>" button to add ISpatialAnalyzerSDK to the Generated Classes section.

6. Select Finish.

7. "CSpatialAnalyzerSDK.h" will automatically be added to your project and contains all the SDK
interfaces available.

VB.NET

1. Create a new Visual Basic Project within Studio:

2. From the Project menu, select "Add Reference"

3. From the Add Reference dialog, select the COM tab followed by the "SpatialAnalyzerSDK"
component name. Press OK.

4. Double left mouse click on the windows form from within the designer. Studio should
automatically display the following method:

 Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles MyBase.Load

 End Sub

5. Modify the class code to appear as follows:

Public Class Form1

 REM Declare the object as the SA SDK Interface

 Private NRKSdk As SpatialAnalyzerSDK.SpatialAnalyzerSDK

 REM Declare an enumerated type that defines the various return codes from the SA SDK Interface

 Enum MPStatus

 SdkError = -1

 Undone = 0

 InProgress = 1

 DoneSuccess = 2

 DoneFatalError = 3

 DoneMinorError = 4

 CurrentTask = 5

 End Enum

 REM Allocate the SDK Interface object

 Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles MyBase.Load

 NRKSdk = New SpatialAnalyzerSDK.SpatialAnalyzerSDK

 End Sub

End Class

6. Compile and run the application.

SDK Overview

The SDK consists of set of function calls that allow the specification and execution of MP Steps. The
client must first instruct the SDK engine to connect to Spatial Analyzer before performing any MP
Step operations. The following example illustrates initiating the connection with Spatial Analyzer (in
Visual Basic):

 If (NRKSdk.Connect("localhost") = False) Then

 MsgBox("Failed to connect with automation server!")

 End If

To execute the MP Step that will " Construct a Point in Working Coordinates" the syntax would appear
as follows (shown in Visual Basic):

 NRKSdk.SetStep("Construct a Point in Working Coordinates")

 NRKSdk.SetVectorArg("Working Coordinates", 10.1234, 20.2345, 30.5678)

 NRKSdk.SetPointNameArg("Point Name", "", "TestGrp", "TestPt")

 Dim bSendStatus As Boolean

 bSendStatus = NRKSdk.ExecuteStep()

The string names specified for the step name and its corresponding arguments need to exactly
match the SA MP Text strings in English.

The return status of executing any MP can be checked as follows (shown in Visual Basic):

 If (bSendStatus) Then

 Dim rCode As Long

 NRKSdk.GetMPStepResult(rCode)

 If (rCode <> MPStatus.DoneSuccess) Then

 REM Do some error handling here

 If (rCode = MPStatus.SdkError) Then

 Dim msgArray As Object

 REM Display text returned from execution attempt to user...

 If (NRKSdk.GetMPStepMessages(msgArray)) Then

 Dim idx

 Dim msg As String

 msg = ""

 For idx = LBound(msgArray) To UBound(msgArray)

 msg = msg + msgArray(idx) + Chr(10) + Chr(13)

 Next

 MsgBox(msg)

 End If

 End If

 End If

 End If

If an MP contains a "Result Only" argument, then the result argument can be retrieved via calling the
appropriate Get function call. For example, if the MP step successfully executed and a vector result
argument needed to be extracted, the following code could be used (shown in Visual Basic):

 REM This section illustrates getting return values from the successfully sent MP Step

 If (bSendStatus) Then

 Dim rCode As Long

 NRKSdk.GetMPStepResult(rCode)

 If (rCode = MPStatus.DoneSuccess) Then

 REM The command executed successfully, now get the return values and display to user

 Dim xVal, yVal, zVal As Double

 NRKSdk.GetVectorArg("Vector Representation", xVal, yVal, zVal)

 End If

 End If

SDK Engine

Whenever a client application is executing, the Spatial Analyzer SDK engine will automatically start
and appear minimized on the TaskBar. Below shows the engine in its maximized state:

Spatial Analyzer

Spatial Analyzer also supports the generation of sample code through the MP Editor. Setup an MP
Step with the necessary arguments and press the code generation button to display sample code in
either Visual C++ or Visual Basic.

Generated code will automatically be placed on the Clipboard for pasting into a client application that
is being developed.

Examples

Sample client applications are available for Visual C++ and Visual Basic. The Visual C++ sample
contains a helper class called SDKHelper. The SDKHelper class provides convenience functions
when accessing Arrays from a Visual C++ client application. When using the new Spatial Analyzer
code generation feature, the code generator will utilize this helper function in any code generated to
Set/Get array data. Please refer to the Visual C++ sample client application source code for more
details.

