Modern high precision, high speed measurement of segments and moulds

Presented by
Nod Clarke-Hackston
International Sales Manager VMT

Mould \& Segment Measurement

14.2m Diameter Tunnel Boring Machine - Elbe Tunnel - Germany

Mould \& Segment Measurement

S-300 machine used in the construction of M30 Highway in Madrid

Mould \& Segment Measurement

M30 Tunnel showing segmental lining

Mould \& Segment Measurement

Geometrical Verification of main body of S 300 machine

Mould \& Segment Measurement

Laser tracker and workstation position for outer measurement

Mould \& Segment Measurement

Retro-reflective Prism positioning via scaffolding

Mould \& Segment Measurement

3D view showing measurement area

Range of operation from one standpoint
Typical fixed point set-up

Mould \& Segment Measurement

Inside reference for main gear mounting

$\xrightarrow{2}$

Mould \& Segment Measurement

Plan of measurement operating area

Point cloud distribution without Bundling Scale exaggerated by 1000

Point cloud distribution with Bundling Scale exaggerated by 1000

Mould \& Segment Measurement

Presentation of results in Customers preferred style

Mould \& Segment Measurement

Geometrical Verification as part of Quality Management

- Requirements for segmental liners:
- Full plane surface contact in radial and circumferential joints due to the high loads being transferred among them
- Correct linear dimensions to avoid stepping and lipping
- Correct angles between contact surfaces to
 minimize birds mouthing or uneven point loads
- Documentary evidence that only certified segments have been used in the tunnel construction

Mould \& Segment Measurement

Sample ring build

Mould \& Segment Measurement

Segment Tolerance

Mould \& Segment Measurement

 Vermessungstechnik
Segmental Dimensional Tolerance

Angle of Joint Plane from perpendicular, measured at Face of Joint $\pm 0.03^{\circ}$

Width -
Circumferential Face to Circumferential Face $\pm 1.0 \mathrm{~mm}$
Max each face $\pm 0.5 \mathrm{~mm}$
Angle of Joint Plane from
Perpendicular, measured at Face of Joint $\pm 0.03^{\circ}$

Thickness
-0.0 mm +3.0 mm

Mould \& Segment Measurement

Warping Tolerance

Mould \& Segment Measurement

Typical Segmental Dimensional Tolerance

1	Circumferential Length	+ 3mm,	- 0mm.	
2	Thickness	+ 3mm,	-1mm.	
3	Width	+1mm,	-1mm.	
4	Internal Diameter of completed ring	+0.15\%,	-0mm.	of theoretical diameter
5	Bolt Hole sizes	+1mm,	-0mm.	
6	Bolt holes and dowels: position	+1mm,	-1mm.	
7	E \& M Fixing holes	(TBA)	(TBA)	
8	Gasket Grooves: depth	+0.5mm	-0.5mm	
9	Gasket Grooves: width	+0.5mm	-0.5mm	
10	Longitudinal Joints			
	In plane containing axis of the tunnel (longitudinal)	0.3mm	from theoretical plane with rate of deviation not exceeding $0.6 \mathrm{~mm} / \mathrm{m}$	
	In a Radial plane	0.1 mm	from theoretical plane with rate of deviation not exceeding $0.6 \mathrm{~mm} / \mathrm{m}$	
11	Circumferential faces	0.5 mm	from theoretical plane with rate of deviation not exceeding $1 \mathrm{~mm} / \mathrm{m}$	
12	Smoothness of other faces			
	Back	+1.5mm	-1.5mm	Smooth float
	Front	+1mm	-1mm	Formed

Mould \& Segment Measurement

Optimum time for measurement of segments

Mould \& Segment Measurement

All segment measurement at the same phase

Mould \& Segment Measurement

Methods for precise mould and segment control

- Steel Templates
- Measurement arms
- Theodolite Measurement Systems
- Photogrammetry
- Laser Interferometer System

Mould \& Segment Measurement

Laser Tracker System

Mould \& Segment Measurement

Laser Tracker Instrument

Mould \& Segment Measurement

Large Segment Measurement in Malaysia

Mould \& Segment Measurement

Central Positioning for measuring Key Segment Moulds

Mould \& Segment Measurement

Speed of prism across surface

Mould \& Segment Measurement

View of measurement area

Mould \& Segment Measurement

Measured Points Trace

Mould \& Segment Measurement

Spatial Analyzer 3D Graphical Software platform

Mould \& Segment Measurement

VMT's TubGeo ${ }^{\circ}$ Evaluation Software

- TubGeo ${ }^{\ominus}$ software processes 3D co-ordinates for the geometrical properties of moulds and segments
- Interactive guidance of the user during the entire measurement process
- Visual Basic Scripts for the controlling of regular measurements with individual programming for repetitive tasks.
- User defined formatting of final report together with an extensive log-file of intermediate results

Mould \& Segment Measurement

Best Fit - Volume

Mould \& Segment Measurement

Graphical and Tabular Records

(${ }^{\text {VMIT }}$	1. Bestfit and Parallelism of Contact-surfaces					둔
segment	Tongitu		circumfer	ntial		
	Tef	right	Front	back	Inside	outside
A_R6	0.3	-0.3	0.4	0.5	-1.9	3.0
A_R ${ }^{\text {a }}$	0.4	-0.4	-0.6	-0.4	-0.8	1.6
A L8	-0.3	-0.3	0.3	0.7	0.8	2.1
A_L9	0.4	-0.3	0.5	0.5	-1.7	1.0
A_L10	-0.4	0.3	-0.4	-0.6	-0.7	1.3
B_R6	-0.2	-0.3	0.3	-0.5	-2.0	1.7
B_R7	-0.4	0.4	-0.4	0.5	1.0	1.4
B_L8	-0.3	0.2	0.4	-0.5	-1.6	1.4
B_L9	-0.3	0.4	-0.3	-0.3	-0.7	0.9
B L10	-0.3	-0.3	-0.4	-0.4	-0.9	1.2
C_R6	0.5	-0.4	-0.4	-0.6	0.6	1.6
C_R7	0.5	-0.3	-0.4	-0.5	0.9	1.6
C_L8	-0.5	0.3	-0.4	-0.4	-1.7	2.0
C_L9	-0.4	0.4	-0.3	0.7	0.4	-1.1
C_L10	-0.6	0.7	0.5	-0.6	0.5	-1.3
D_R6	-0.4	-0.2	-0.3	0.4	0.6	1.9
D_R7	-0.6	0.5	-0.3	-0.4	-0.8	1.7
D_L8	0.4	-0.4	-0.4	-0.7	0.7	1.6
D Lo.1	-0.6	-0.4	-0.4	0.4	0.6	1.5
OLS9-2	-0.6	-0.3	-0.5	0.4	0.7	
D L10	-0.8	-0.5	-0.3	-0.6	-1.6	1.1
ER6	0.5	-0.3	-0.4	0.6	0.7	-1.5
E_R7	-0.4	0.3	0.3	0.3	0.7	1.5
E_L8	-0.5	-0.2	-0.2	-0.3	-0.6	
E_L9	-0.7	-0.4	0.2	0.4	0.8	1.5
EL10	-0.6	0.5	0.3	-0.7	0.6	1.3
F. R6	-0.3	-0.3	-0.3	0.4	0.5	-1.3
E.R7	-0.6	-0.5	-0.4	-0.6	0.6	1.5
F.L8	-0.4	-0.9	-0.4	0.6	0.3	2.1
F. L9	0.5	0.4	-0.2	0.7	0.6	
FLL10	-0.6	-0.4	-0.4	-0.5	0.9	1.1
G_R6	-0.2	-0.3	-0.2	0.6	0.7	2.7
G_R7	-0.4	-0.5	-0.2	0.4	0.6	1.2
GL8	-0.5	0.3	0.3	-0.4	0.3	-1.3
GLL9	-0.3	0.4	0.5	-0.4	0.4	1.4
G.L10	-0.7	-0.7	0.2	0.6	0.8	1.1
H_R6	-0.3	0.3	-0.3	0.4	-1.0	1.1
H-R7	-0.4	0.4	-0.4	0.6	0.4	1.2
H L8	-0.3	0.3	0.3	-0.4	-0.4	1.1
HLS	-0.6	-0.4 0.4	-0.3	-0.3	-0.7 0.6	${ }_{-1.3}^{1.3}$
K R6	-0.5	-0.5	-0.2	-0.2	0.2	1.1
KR7	0.5	0.4	0.2	-0.2	0.4	1.3
KL8	-0.7	-0.4	-0.2	-0.2	0.3	0.8
KL.9	0.5	-0.7	0.2	0.4	0.4	-1, ${ }^{1}$
KLL10	0.4	-0.4	0.1	-0.1	0.3	0.9
mean value	0.44	0.41	0.33	0.48	0.88	1.25
Tolerance	+/-0,7	+1/0,7	+1/1,0	+1/1,0	+/2, 2	+/3, 0

Mould \& Segment Measurement

Test Certificate

Mould \& Segment Measurement

Correction Scheme

- Illustrates any significant modifications proposed with respect to their feasibility
- Based on test certificate
- After any geometrical modification the mould must be resurveyed for confirmation

Mould \& Segment Measurement

Virtual Ring Build

Mould \& Segment Measurement

Tolerances on Virtual Ring Build

Mould \& Segment Measurement

Virtual Ring Build - Multiple Rings

Mould \& Segment Measurement

Suggested Quality Assurance of Segments

1. Measurement control of all moulds before mass production
2. Measurement control of all segments after first pouring
3. Measurement control of all segments after $10^{\text {th }}$ pouring
4. Measurement control of all segments after $20^{\text {th }}$ pouring
5. Measurement control of all segments after $30^{\text {th }}$ pouring
6. Tolerances on "closed" (built) ring must NOT be the sum of all individual tolerances.
7. Individual tolerances should be compensated with the mathematical sign
8. Every controlled segment must be proved by a record sheet

Thank you for your attention!

