

Modern high precision, high speed measurement of segments and moulds

Presented by Nod Clarke-Hackston International Sales Manager VMT

14.2m Diameter Tunnel Boring Machine – Elbe Tunnel - Germany

S-300 machine used in the construction of M30 Highway in Madrid

M30 Tunnel showing segmental lining

Geometrical Verification of main body of S 300 machine

Laser tracker and workstation position for outer measurement

Retro-reflective Prism positioning via scaffolding

3D view showing measurement area

Range of operation from one standpoint

Typical fixed point set-up

Inside reference for main gear mounting

Plan of measurement operating area

Point cloud distribution without Bundling Scale exaggerated by 1000 Point cloud distribution with Bundling Scale exaggerated by 1000

Presentation of results in Customers preferred style

Geometrical Verification as part of Quality Management

- Requirements for segmental liners:
 - Full plane surface contact in radial and circumferential joints due to the high loads being transferred among them
 - Correct linear dimensions to avoid stepping and lipping
 - Correct angles between contact surfaces to minimize birds mouthing or uneven point loads

• Documentary evidence that only certified segments have been used in the tunnel construction

Sample ring build

Warping Tolerance

Typical Segmental Dimensional Tolerance

1	Circumferential Length	+ 3mm,	- 0mm.			
2	Thickness	+ 3mm,	-1mm.			
3	Width	+1mm,	-1mm.			
4	Internal Diameter of	+0.15%,	-0mm.	of theoretical diameter		
	completed ring					
5	Bolt Hole sizes	+1mm,	-0mm.			
6	Bolt holes and dowels:	+1mm,	-1mm.			
	position					
7	E & M Fixing holes	(TBA)	(TBA)			
8	Gasket Grooves: depth	+0.5mm	-0.5mm			
9	Gasket Grooves: width	+0.5mm	-0.5mm			
10	Longitudinal Joints					
	In plane containing axis of	0.3mm	from theoretical plane with rate of			
	the tunnel (longitudinal)		deviation not exceeding 0.6mm/m			
	In a Radial plane	0.1mm	from theoretical plane with rate of			
			deviation not exceeding 0.6mm/m			
11	Circumferential faces	0.5mm	from theoretical plane with rate of			
			deviation not exceeding 1mm/m			
12	Smoothness of other faces					
	Back	+1.5mm	-1.5mm	Smooth float		
	Front	+1mm	-1mm	Formed		

Optimum time for measurement of segments

All segment measurement at the same phase

Methods for precise mould and segment control

- Steel Templates
- Measurement arms
- Theodolite Measurement Systems
- Photogrammetry
- Laser Interferometer System

Gesellschaft für Vermessungstechnik

Laser Tracker System

Large Segment Measurement in Malaysia

Central Positioning for measuring Key Segment Moulds

Speed of prism across surface

View of measurement area

Measured Points Trace

Spatial Analyzer 3D Graphical Software platform

VMT's TubGeo[©] Evaluation Software

- TubGeo[©] software processes 3D co-ordinates for the geometrical properties of moulds and segments
- Interactive guidance of the user during the entire measurement process
- Visual Basic Scripts for the controlling of regular measurements with individual programming for repetitive tasks.
- User defined formatting of final report together with an extensive log-file of intermediate results

Best Fit - Volume

Graphical and Tabular Records

segment	longitudinal		circumfe	rrential	parallelism		
	left	right	front	back	inside	outside	
A R6	0.3	-0.3	0.4	-0.5	-1.9		
A R7	0.4	-0.4	-0.6	-0.4	-0.8		
A L8	-0.3	-0.3	0.3	0.7	0.8		
A 19	0.4	-0.3	0.5	0.5	-17		
A 1 10	-0.4	0.3	-0.4	3.0	-0.7		
R P6	-0.4	-0.3	0.4	-0.0	-2.0		
D_R0	-0.2	-0.3	0.3	-0.5	-2.0		
B_K/	-0.4	0.4	-0.4	0.5	1.0		
B_L8	-0.3	0.2	0.4	-0.5	-1.6		
B_L9	-0.3	0.4	-0.3	-0.3	-0.7		
B_L10	-0.3	-0.3	-0.4	-0.4	-0.9		
C_R6	0.5	-0.4	-0.4	-0.6	0.6		
C_R7	0.5	-0.3	-0.4	-0.5	0.9		
C_L8	-0.5	0.3	-0.4	-0.4	-1.7		
C_L9	-0.4	0.4	-0.3	0.7	0.4		
C_L10	-0.6	0.7	0.5	-0.6	0.5		
D_R6	-0.4	-0.2	-0.3	0.4	0.6		
D R7	-0.6	0.5	-0.3	-0.4	-0.8		
D L8	0.4	-0.4	-0.4	-0.7	0.7		
D L9-1	-0.6	-0.4	-0.4	0.4	0.6		
D_L9-2	-0.6	-0.3	-0.5	0.4	0.7		
D_L10	-0.8	-0.5	-0.3	-0.6	-1.6		
E_R6	0.5	-0.3	-0.4	0.6	0.7		
E_R7	-0.4	0.3	0.3	0.3	0.7		
E_L8	-0.5	-0.2	-0.2	-0.3	-0.6		
E_L9 F 10	-0.7	-0.4	0.2	-0.7	0.0		
F R6	-0.3	-0.3	-0.3	0.4	0.5		
F_R7	-0.6	-0.5	-0.4	-0.6	0.6		
F_L8	-0.4	-0.9	-0.4	0.6	0.3		
F_L9	0.5	0.4	-0.2	0.7	0.6		
F_L10	-0.6	-0.4	-0.4	-0.5	0.9		
G_R6	-0.2	-0.3	-0.2	0.6	0.7		
	-0.4	-0.5	-0.2	0.4	0.6		
G_L0	-0.3	0.3	0.5	-0.4	0.3		
G L10	-0.7	-0.7	0.2	0.6	0.8		
H_R6	-0.3	0.3	-0.3	-0.4	-1.0		
H_R7	-0.4	0.4	-0.4	0.6	0.4		
H_L8	-0.3	0.3	0.3	-0.4	-0.4		
H_L9	0.7	-0.2	0.2	-0.3	-0.7		
H_L10	-0.6	0.4	-0.3	-0.2	0.6		
K R7	-0.5	-0.5	-0.2	-0.2	0.2		
KL8	-0.7	-0.4	-0.2	-0.2	0.4		
K L9	0.5	-0.7	0.2	0.4	0.4		
K_L10	0.4	-0.4	0.1	-0.1	0.3		
mean value	0.44	0.41	0.33	0.48	0.88	1	

Test Certificate

1					
Date:	27.09.2001	Segment No.	0013A5R10		
Time:	10:41:28	Segment Type:	A 5		
Temperature:	+25.0°C	Taper:	R		
Criteria:	Measurement	Design Value	DIFFerence	TOLerance	Release
Smoothness of contact	surfaces				
Radial Joint					
Left:	-0.23mm	+0.00mm	-0.23 m m	±0.30mm	YES
Right:	+0.13mm	+0.00mm	+0.13mm	±0.30mm	YES
Front:	-0.34mm	+0.00mm	-0.34mm	±0.50mm	YES
Back:	-0.44mm	+0.00mm	-0.44mm	±0.50mm	YES
Inner radius (Single seg	ment)				
Inside:	-0.60mm	+0.00mm	-0.60mm	±2.00mm	YES
Linear Dimensions					
Seament Width		•			
Left / Outside:	+2021.87mm	+2021.94mm	-0.07mm	±0.60mm	YES
Left / Inside:	+2020.29mm	+2020.14mm	+0.15mm	±0.60mm	YES
Middle / Outside:	+2021.59mm	+2021.94mm	-0.35mm	±0.60mm	YES
Middle / Inside:	+2020.03mm	+2020.14mm	-0.11mm	±0.60mm	YES
Right / Outside:	+2017.53mm	+2017.59mm	-0.06mm	±0.60mm	YES
Right / Inside:	+2016.30mm	+2016.15mm	+0.15mm	±0.60mm	YES
Mean:	+2019.90mm	+2020.00mm	-0.10mm	±0.60mm	YES
Segment Arc length					
Front / Outside:	+4936.35mm	+4936.79mm	-0.44mm	±2.00mm	YES
Front / Inside:	+4533.70mm	+4532.87mm	+0.83mm	±2.00mm	YES
Back / Outside:	+4936.46mm	+4936.78mm	-0.32mm	±2.00mm	YES
Back / Inside:	+4533.81mm	+4532.87mm	+0.94mm	±2.00mm	YES
Mean:	+4735.08mm	+4734.83mm	+0.25mm	±2.00mm	YES
Angular deviation					
Segment:displacement	54.404/01	54 400/01		0.000/01	
angle	+51.431[*]	+51.429[']	+0.002[*]	±0.020[*]	TES
Radial Conicality (over:	+450.0mm)		0.070/01	0.400701	VE0
Left (Inner):	+89.922[°]	+90.000[°]	-0.078[°]	±0.100[°]	YES
	0.0.04.4/91		-0.61mm	±0.79mm	YES
Right (Inner):	+89.914[°]	Han.nnn[,]	-0.086[*]	±0.100[°]	TES
Longitudinal Conicality	(over: +2019.9)	umm)	0.0445	0.000	¥50
Front / Left:	+89.989[*]	+90.000[°]	-0.011[°]	±0.030[°]	YES
Left / Back:	+90.063[*]	+90.052[*]	+0.011[3]	±0.030[°]	YES
Leit (Pront):	+03'303[.]	+09.9/4[]	-0.011[*]	±0.030[°]	TES
Right / Erentu	0.0.014[9]	191000.001	-0.38mm	±1.05mm	YES
Right / Front: Rook / Right	+90.014[*]	+90.000[*]	+0.014[2]	±0.030[°]	TES
Dack / Right:	+90.132[*]	+90.146[']	-0.014[*]	±0.030[°]	TES
Right (Front):	+89.941[*]	+89.927[*]	+0.014[3]	±0.030[°]	YES
			+0.49mm	±1.05mm	YES

Correction Scheme

- Illustrates any significant modifications proposed with respect to their feasibility
- Based on test certificate
- After any geometrical modification the mould must be resurveyed for confirmation

Virtual Ring Build

Tolerances on Virtual Ring Build

Virtual Ring Build – Multiple Rings

Suggested Quality Assurance of Segments

- 1. Measurement control of all moulds before mass production
- 2. Measurement control of all segments after first pouring
- 3. Measurement control of all segments after 10th pouring
- 4. Measurement control of all segments after 20th pouring
- 5. Measurement control of all segments after 30th pouring
- 6. Tolerances on "closed" (built) ring must NOT be the sum of all individual tolerances.
- 7. Individual tolerances should be compensated with the mathematical sign
- 8. Every controlled segment must be proved by a record sheet

Thank you for your attention !